Cars, motorbikes and other vehicles

, and insurance,5 are weighed against the cost of the alternatives, and the value of the benefits ? perceived and real ? of vehicle usage. The benefits may include on-demand transportation, mobility, independence and convenience.7

Cars, motorbikes and other vehicles premium engine oils

Economics of car use

The costs of car usage, which may include the cost of: acquiring the vehicle, repairs and auto maintenance, fuel, depreciation, driving time, parking fees, taxes, and insurance,5 are weighed against the cost of the alternatives, and the value of the benefits ? perceived and real ? of vehicle usage. The benefits may include on-demand transportation, mobility, independence and convenience.7 During the 1920s, cars had another benefit: "couples finally had a way to head off on unchaperoned dates, plus they had a private space to snuggle up close at the end of the night."48

Similarly the costs to society of encompassing car use, which may include those of: maintaining roads, land use, air pollution, road congestion, public health, health care, and of disposing of the vehicle at the end of its life, can be balanced against the value of the benefits to society that car use generates. The societal benefits may include: economy benefits, such as job and wealth creation, of car production and maintenance, transportation provision, society wellbeing derived from leisure and travel opportunities, and revenue generation from the tax opportunities. The ability for humans to move flexibly from place to place has far-reaching implications for the nature of societies.8

Źródło: https://en.wikipedia.org/wiki/Economics_of_car_use


2-stroke engines

2-stroke engines
Main article: 2-stroke engine

The defining characteristic of this kind of engine is that each piston completes a cycle every crankshaft revolution. The 4 processes of intake, compression, power and exhaust take place in only 2 strokes so that it is not possible to dedicate a stroke exclusively for each of them. Starting at TDC the cycle consist of:

Power: While the piston is descending the combustion gases perform work on it?as in a 4-stroke engine?. The same thermodynamic considerations about the expansion apply.
Scavenging: Around 75° of crankshaft rotation before BDC the exhaust valve or port opens, and blowdown occurs. Shortly thereafter the intake valve or transfer port opens. The incoming charge displaces the remaining combustion gases to the exhaust system and a part of the charge may enter the exhaust system as well. The piston reaches BDC and reverses direction. After the piston has traveled a short distance upwards into the cylinder the exhaust valve or port closes; shortly the intake valve or transfer port closes as well.
Compression: With both intake and exhaust closed the piston continues moving upwards compressing the charge and performing a work on it. As in the case of a 4-stroke engine, ignition starts just before the piston reaches TDC and the same consideration on the thermodynamics of the compression on the charge.

While a 4-stroke engine uses the piston as a positive displacement pump to accomplish scavenging taking 2 of the 4 strokes, a 2-stroke engine uses the last part of the power stroke and the first part of the compression stroke for combined intake and exhaust. The work required to displace the charge and exhaust gases comes from either the crankcase or a separate blower. For scavenging, expulsion of burned gas and entry of fresh mix, two main approaches are described: Loop scavenging, and Uniflow scavenging, SAE news published in the 2010s that 'Loop Scavenging' is better under any circumstance than Uniflow Scavenging.6

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Fuel and propulsion technologies

Most cars in use today are propelled by an internal combustion engine, fueled by deflagration of gasoline or diesel. Both fuels are known to cause air pollution and are also blamed for contributing to climate change and global warming.4 Rapidly increasing oil prices, concerns about oil dependence, tightening environmental laws and restrictions on greenhouse gas emissions are propelling work on alternative power systems for cars. Efforts to improve or replace existing technologies include the development of hybrid vehicles, plug-in electric vehicles and hydrogen vehicles. Vehicles using alternative fuels such as ethanol flexible-fuel vehicles and natural gas vehicles are also gaining popularity in some countries. Cars for racing or speed records have sometimes employed jet or rocket engines, but these are impractical for common use.

Oil consumption in the twentieth and twenty-first centuries has been abundantly pushed by car growth; the 1985?2003 oil glut even fuelled the sales of low-economy vehicles in OECD countries. The BRIC countries are adding to this consumption; in December 2009 China was briefly the largest car market.35

Źródło: https://en.wikipedia.org/wiki/Car#Fuel_and_propulsion_technologies